A Riemann-Solver Free Spacetime Discontinuous Galerkin Method for General Conservation Laws

Show more

References

[1] Roe, P. (1981) Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. Journal of Computational Physics, 43, 357-372.

http://dx.doi.org/10.1016/0021-9991(81)90128-5

[2] Tu, S. (2009) A High Order Space-Time Riemann-Solver-Free Method for Solving Compressible Euler Equations. Proceedings of the 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, 5-8 January 2009, AIAA Paper 2009-1335.

http://dx.doi.org/10.2514/6.2009-1335

[3] Tu, S. (2009) A Solution Limiting Procedure for an Arbitrarily High Order Space-Time Method. Proceedings of the 19th AIAA Computational Fluid Dynamics Conference, San Antonio, 22-25 June 2009, AIAA Paper 2009-3983.

[4] Tu, S., Skelton, G. and Pang, Q. (2011) A Compact high Order Space-Time Method for Conservation Laws. Communications in Computational Physics, 9, 441-480.

[5] Tu, S. and Tian, Z. (2010) Preliminary Implementation of a High Order Space-Time Method on Overset Cartesian/ Quadrilateral Grids. Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 4-7 January 2010, AIAA Paper 2010-0544.

http://dx.doi.org/10.2514/6.2010-544

[6] Tu, S., Pang, Q. and Xiang, H. (2011) Wave Computation Using a High Order Space-Time Riemann Solver Free Method. Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference, Portland, 5-8 June 2011, AIAA Paper 2011- 2846.

[7] Tu, S., Skelton, G. and Pang, Q. (2012) Extension of the High-Order Space-Time Discontinuous Galerkin Cell Vertex Scheme to Solve Time Dependent Diffusion Equations. Communications in Computational Physics, 11, 1503-1524.

http://dx.doi.org/10.4208/cicp.050810.090611a

[8] Tu, S., Pang, Q. and Xiang, H. (2012) Solving the Shallow Water Equations Using the High Order Space-Time Discontinuous Galerkin Cell-Vertex Scheme. Proceedings of the 50th AIAA Aerospace Science Meetings, Nashville, 9-12 January 2012, AIAA Paper 2012-0307.

[9] Tu, S., Pang, Q. and Xiang, H. (2012) Solving the Level Set Equation Using the High Order Space-Time Discontinuous Galerkin Cell-Vertex Scheme. Proceedings of the 50th AIAA Aerospace Science Meetings, Nashville, 9-12 January 2012, AIAA Paper 2012-1233.

http://dx.doi.org/10.2514/6.2012-1233

[10] Tu, S. and Pang, Q. (2012) Development of the High Order Space-Time Discontinuous Galerkin Cell Vertex Scheme (DG-CVS) for Moving Mesh Problems. Proceedings of the 42nd AIAA Fluid Dynamics Conference, New Orleans, 25- 28 June 2012, AIAA Paper 2012-2835.

http://dx.doi.org/10.2514/6.2012-2835

[11] Tu, S., Pang, Q. and Myong, R. (2013) A Riemann-Solver Free Space-Time Discontinuous Galerkin Method for Magnetohydrodynamics. Proceedings of the 44th AIAA Plasmadynamics and Lasers Conference, San Diego, 24-27 June 2013, AIAA Paper 2013-2755.

http://dx.doi.org/10.2514/6.2013-2755

[12] Tu, S., Song, H., Ji, L. and Pang, Q. (2015) Further Development of a Riemann-Solver Free Space-Time Discontinuous Galerkin Method for Compressible Magnetohydrodynamics (MHD) Equations. Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, 5-9 January 2015, AIAA Paper 2015-0567.

[13] Chang, S.-C. and To, W. (1991) A New Numerical Framework for Solving Conservation Laws: The Method of Space-Time Conservation Element and Solution Element. NASA TM 1991-104495.

[14] Cockburn, B. and Shu, C.-W. (2001) Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems. Journal of Scientific Computing, 16, 173-261.

http://dx.doi.org/10.1023/A:1012873910884

[15] Dyson, R. (2001) Technique for Very High Order Nonlinear Simulation and Validation. NASA/TM 2001-210985.

[16] Dumbser, M., K?serb, M., Titarevb, V.A. and Toro, E.F. (2007) Quadrature-Free Non-Oscillatory Finite Volume Schemes on Unstructured Meshes for Nonlinear Hyperbolic Systems. Journal of Computational Physics, 226, 204-243.

http://dx.doi.org/10.1016/j.jcp.2007.04.004

[17] Dasgupta, G. (2003) Integration within Polygonal Finite Elements. Journal of Aerospace Engineering, 16, 9-18.

http://dx.doi.org/10.1061/(ASCE)0893-1321(2003)16:1(9)

[18] Jiang, G. and Shu, C.-W. (1996) Efficient Implementation of Weighted ENO Schemes. Journal of Computational Phy- sics, 126, 202-228.

http://dx.doi.org/10.1006/jcph.1996.0130

[19] Popescu, M., Shyy, W. and Garbey, M. (2005) Finite Volume Treatment of Dispersion-Relation-Preserving and Optimized Prefactored Compact Schemes for Wave Propagation. Journal of Computational Physics, 210, 705-729.

http://dx.doi.org/10.1016/j.jcp.2005.05.011

[20] Osher, S. and Sethian, J.A. (1988) Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational Physics, 79, 12-49.

http://dx.doi.org/10.1016/0021-9991(88)90002-2

[21] Zalesak, S. (1979) Fully Multidimensional Flux-Corrected Transport Algorithms for Fluids. Journal of Computational Physics, 31, 335-362.

http://dx.doi.org/10.1016/0021-9991(79)90051-2

[22] Bell, J.B., Colella, P. and Glaz, H.M. (1989) A Second-Order Projection Method for the Incompressible Navier-Stokes Equations. Journal of Computational Physics, 85, 257-283.

http://dx.doi.org/10.1016/0021-9991(89)90151-4

[23] Le Veque, R.J. (1996) High Resolution Conservative Algorithms for Advection in Incompressible Flow. SIAM Journal on Numerical Analysis, 33, 627-665.

http://dx.doi.org/10.1137/0733033

[24] Tan, W. (1992) Shallow Water Hydrodynamics: Mathematical Theory and Numerical Solution for a Two-Dimensional System of Shallow Water Equations. Elsevier Oceanography Series, Water & Power Press, Beijing.

[25] Liang, S.-J. and Hsu, T.-W. (2009) Least-Squares Finite-Element Method for Shallow-Water Equations with Source Terms. Acta Mechanica Sinica, 25, 597-610.

http://dx.doi.org/10.1007/s10409-009-0250-x

[26] Cueto-Felgueroso, L., Colominas, I., Fe, J., Navarrina, F. and Casteleiro, M. (2005) High-Order Finite Volume Schemes on Unstructured Grids Using Moving Least-Squares Reconstruction. Application to Shallow Water Dynamics. International Journal for Numerical Methods in Engineering, 65, 295-331.

http://dx.doi.org/10.1002/nme.1442

[27] Myong, R. and Roe, P. (1997) Shock Waves and Rarefaction Waves in Magnetohydrodynamics. Part 1. A Model System. Journal of Plasma Physics, 58, 485-519.

http://dx.doi.org/10.1017/S002237789700593X

[28] Myong, R.S. and Roe, P.L. (1998) On Godunov-Type Schemes for Magnetohydrodynamics. Journal of Computational Physics, 147, 545-567.

http://dx.doi.org/10.1006/jcph.1998.6101

[29] Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I. and De Zeeuw, D.L. (1999) A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics. Journal of Computational Physics, 154, 284-309.

http://dx.doi.org/10.1006/jcph.1999.6299

[30] Brio, M. and Wu, C.C. (1988) An Upwind Differencing Scheme for the Equations of Ideal Magnetohydrodynamics. Journal of Computational Physics, 75, 400-422.

http://dx.doi.org/10.1016/0021-9991(88)90120-9

[31] Li, F. and Shu, C.-W. (2005) Locally Divergence-Free Discontinuous Galerkin Methods for MHD Equations. Journal of Scientific Computing, 22-23, 413-442.

http://dx.doi.org/10.1007/s10915-004-4146-4